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Abstract—The sintering temperature (ST) is a critical index for 

condition monitoring and process control of coal-fired equipment 
and is widely used in the production of cement, aluminium, 
electricity, steel and chemicals. The accurate prediction of the ST 
is important for control systems to anticipate tragedies. In this 
paper, we propose a deep learning model for forecasting the ST 
using automatic spatiotemporal feature extraction from 
multivariate thermal time series. A hybrid deep neural network 
named deep convolutional neural network and gated recurrent 
unit network (DCGNet) is designed to extract multivariate 
coupling and nonlinear dynamic characteristics for forecasting 
the ST. DCGNet uses convolutional neural networks (CNNs) and  
gated recurrent unit (GRU) to extract the local spatial-temporal 
dependency patterns among the multivariates, and another 
parallel GRU using historical ST data as input is incorporated to 
more accurately capture the dynamic characteristics of ST time 
series. Based on real-world data, application results show that the 
proposed approach has high forecasting accuracy and robustness, 
thus having broad application prospects in industrial processes. 
 

Index Terms— Temperature forecasting; Multivariate time 
series; Convolutional neural network; Gated recurrent unit 
network. 
 

I. INTRODUCTION 
n coal-fired facilities, such as rotary kilns, boilers, and 

oxygen furnaces, monitoring combustion processes and 
taking appropriate steps to keep the kiln in stable production 
conditions are vital to enhancing productivity and reducing 
exhaust gas and particle emissions.  

With the development of information technologies, the 
measurement and detection of combustion in rotary kilns using 
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soft measurement technologies has frequently been carried out. 
Because of the complex physical and chemical reactions, heat 
and mass transfer and multiphase fluid flow occurring 
simultaneously during sintering, mechanism modeling[1, 2] of 
sintering is hard to construct. Compared to mechanism 
modeling, data-driven modeling has exhibited great potential 
for describing the complex behaviour in the sintering process. 
By extracting the nonlinear characteristics of images from a 
charge-coupled device (CCD) camera[3] and thermal process 
data from a distributed control system (DCS)[4], many 
data-driven models have been proposed to address online 
monitoring and prediction for rotary kilns, such as burning 
condition recognition[5], coal feeding state prediction[6], 
cement fineness estimation[7], clinker free lime content 
estimation[8], process fault detection[9], and decomposition 
rate evaluation of cement raw meal[10]. These models include 
multilayer perceptrons[7], random vector functional link 
(RVFL) networks[8], locally linear neuro-fuzzy (LLNF) 
network[9], generalized regression neural network (GRNN)[4], 
least squares support vector machines (LS-SVM)[10], radial 
basis function (RBF) neural network[4, 11], and kernel extreme 
learning machines (KELM)[12]. 

The modeling methods mentioned above have made 
significant achievements in monitoring and predicting 
combustion, but there is still room for improvement. The 
combustion process of rotary kilns is a complex nonlinear 
dynamic system, and the thermal data collected from process 
sensors are multivariate time series with typical strong coupling 
and nonlinear dynamic characteristics. Most data-driven 
models implement static modeling or autoregressive 
statistical-based prediction considering the information in a 
separate spatial or temporal scale of variates, and the variates 
are directly fed into the statistical classifiers or regression 
without mining their relationships and dynamic dependencies. 
The precise prediction of the sintering temperature (ST) using 
thermal data in the field is difficult. 

In recent years, deep learning (DL) has made great 
achievements in its ability to extract hierarchical 
representations from input data with nonlinear characteristics in 
various recognition and prediction applications. Convolutional 
neural network (CNN)[13] have been widely used in image 
processing and action recognition due to the unique ability of 
these networks to extract autonomous local shift-invariant 
characteristics from image data[14]. Furthermore, CNN can 
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also be used for capturing global information from 
multidimensional data and noise removal[15]. 

Recurrent neural network (RNN)[16] have made great 
progress in time series prediction, such as in natural language 
processing and speech recognition, because of the ability of 
these networks to extract temporal information from irregular 
trends in time series data[17]. Long short-term memory (LSTM) 
networks[18], as variants of RNN, improve the relatively 
long-term dependency abilities and solve the training gradient 
explosion and vanishing problems of RNN[19]. To decrease 
model complexity and better inhibit the overfitting of LSTM, 
gated recurrent unit (GRU)[20] have been proposed and used in 
various applications to handle time series data with irregular 
changes[21]. 

Some researchers started to extract multivariate spatial and 
temporal dependencies by incorporating CNN in RNN models. 
In [22], a method based on spatiotemporal feature fusion of 
supervisory control and data acquisition by  CNN and GRU 
was proposed for the condition monitoring of wind turbines. 
Using  CNN to extract deep features from a sequence of frames 
and inputting these features into  bi-directional LSTM network 
to learn an informative and a non-informative sequence of 
frames in the  cloud-based tier was proposed in [23]. [24] 
proposed a CNN-LSTM neural network to extract spatial and 
temporal features to effectively predict housing energy 
consumption. 

In this paper, taking advantage of recent developments in DL 
research, we propose a novel framework for forecasting the ST 
in a rotary kiln. We propose a hybrid deep network model 
named deep convolutional neural network and gated recurrent 
unit networks (DCGNet) to extract multivariate coupling and 
nonlinear dynamic characteristics and forecast the ST after the 
optimal correlative thermal data are selected by using a 
principal component analysis (PCA) algorithm. A module 
combines CNNs with GRU network to discover local 
spatiotemporal dependencies of multidimensional variates, and 
another GRU network using historical ST data as input is 
incorporated in parallel to other module to capture the nonlinear 
dynamic characteristics of the ST. Finally, the deep features 
extracted by the two modules are weighted fused to feed into a 
fully connected (FC) layer for forecasting the ST. 

The contributions of this paper are as follows: 
1) A data-driven model for ST prediction based on DL is 

proposed. To the best of our knowledge, our work is the 
first to forecast the ST in rotary kilns by using multivariate 
thermal process signals. Unlike traditional data-driven 
modeling methods for recognizing and predicting 
combustion, a deep hybrid dynamic network model 
combined with correlated feature selection is utilized for 
predicting the ST. This DL-based framework provides a 
new idea for establishing a soft sensor model of industrial 
process data with large time lags, multivariate coupling 
and nonlinear characteristics. 

2) Unlike conventional static state-based and autoregressive 
statistics-based methods, a hybrid deep network, DCGNet, 
with a parallel concatenated structure based on CNNs and 
GRU networks is proposed to extract the coupling and 

nonlinear dynamic characteristics of multivariate thermal 
process data. The concatenation of CNNs and GRU 
network in the first module is used to extract the local 
nonlinear coupling and dynamic characteristics from 
multiple process data, and another parallel GRU network is 
adopted to capture the long-term dynamic dependency of 
historical ST data. The FC layer connects the two parallel 
modules for single-step forecasting of the ST. 

This paper is organized as follows: Section II describes the 
technological process of rotary kilns and formulates the 
problem. Section III describes PCA and the structure of the 
proposed DCGNet in detail. Section IV illustrates the 
experimental results. Finally, the conclusion is drawn in 
Section V. 

II. PROCESS DESCRIPTION AND PROBLEM FORMULATION 
The process flow chart of an alumina rotary kiln is shown in 

Fig. 1. The rotary kiln barrel is 3.5-4.5 m in diameter and 
90-110 m in length and has an average daily output of several 
tons. During the production process, the kiln is installed 
obliquely and driven by a motor rotating slowly. High-silica 
bauxite, soda ash, lime, etc., are mixed and ground into a raw 
material slurry in a certain proportion, and then the slurry flows 
from the kiln tail to the kiln head. Additionally, the coal powder 
is blown into the kiln by a blower from the kiln head to the kiln 
tail end. The coal powder and the material burn in the sintering 
zone in the high-temperature environment, which is as high as 
1100-1300 °C under normal sintering conditions. The material 
is dried, preheated, and sintered before entering the cooling 
machine. The process of burning material in the sintering zone 
(burning zone) is called sintering. 

The sintering zone is approximately 10-15 m away from the 
kiln head. The ST in the sintering zone is an important index for 
combustion monitoring and control because the ST can reflect 
the combustion conditions to a certain extent, while 
conventional high-temperature physical measurement sensors, 
such as thermocouples and ultraviolet sensors, are difficult to 
deploy due to either the rotational structure of the rotary kiln or 
the dust and particles inside the kiln. An infrared thermometer 
can measure the ST by a temperature-sensing element installed 
in the burning zone. However, the temperature-sensing element 
is prone to inaccurate measurement due to optical pollution or 
optical deviation[25]. An infrared camera system via 
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Fig. 1. Rotary kiln production process 
 
  

Authorized licensed use limited to: Universidade de Macau. Downloaded on September 07,2020 at 03:21:00 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3022019, IEEE
Transactions on Industrial Informatics

vision-based algorithms can be used for ST measurement 
owing to the intuition and immediacy of the infrared camera 
system, while the performance of the system is influenced by 
factors such as emissivity, scattering and absorption of the light 
path, and background noise in actual temperature 
measurement[12]. 

The sintering process in a rotary kiln has been considered 
one of the most complicated processes because complex 
physical and chemical reactions, heat and mass transfer and 
multiphase fluid flow occur simultaneously. For example, in 
the sintering of alumina, more than fifty material substances are 
used in approximately twenty types of physical and chemical 
reactions in the kiln. Three main characteristics of sintering in a 
rotary kiln are as follows: 
1) Dynamic nonlinearity: Because of the complex physical

and chemical reactions, the relationship among thermal
process variates is complicated and difficult to clearly
express using mathematical models. The change in a
variate is influenced by changes in other variates.

2) Multivariate coupling: During sintering in a rotary kiln,
there are some observed variates, such as the kiln head
temperature, kiln tail temperature, main driven current, and
ST. According to changes in these observed variates, the
operators and control system will adjust the operational
variates, such as the coal feeding rate and blast flow rate, to
maintain the kiln under normal sintering conditions. In turn,
the adjustment affects the observed variates. Therefore,
these process variates interact with each other, and there
are correlations between their values.

3) Large time lag: Because of the large size and the slow heat
transfer mechanism of the kiln, the ST is influenced by
previous thermal process variants over a certain period.
After the state variates (such as the kiln head temperature)

change, the ST will not change immediately. The change in 
the ST is the cumulative response of all variables over time. 
Forecasts of the ST should consider the time lag and 
accumulative effect between the previous thermal process 
variants and the ST. 

In this paper, time series forecasting is focused on multiple 
input variates and a singular prediction output. More formally, 
a series of process variates 1={ ,..., }iX x x  and y  as the variate 
to be estimated (ST) are given, where ,×∈ ∈ 

N i NX y , i is the 
variable dimension and N is the number of samples collected by 
the DCS. We aim to predict the next signals in a rolling 
forecasting fashion. Assuming that { ( ),..., ( ),−X t X t τ  

( ),..., ( )}−y t y t τ  are available, we estimate the ST at the next 
moment, thus predicting ( +1)y t , where τ  is the correlative 
time interval of the thermal process data. The nonlinear 
dynamic mapping is formulated as follows: 

( 1) ( ( ),..., ( ), ( ),..., ( ))+ = − −y t f X t X t y t y tτ τ                            (1) 
As shown in Fig. 2, the prediction of the ST is implemented 

using previous thermal process data in a period with a fixed 
length of τ . The initial model is constructed as a nonlinear 
function from the multidimensional thermal process variate X  
and ST y .  

III. MODELING METHODOLOGY 

Focusing on the abovementioned practical modeling 
problem, a novel DCGNet-based modeling method is proposed 
in this paper for predicting the ST in rotary kilns, as shown in 
Fig. 3. First, to reduce the model complexity and improve the 
prediction performance, PCA is introduced to select the optimal 
model inputs. Then, unlike conventional nonlinear dynamic 
process system modeling, which adopts an overall model 
containing all the variates, the proposed DCGNet separately 
models the selected variates and historical ST data. In the first 
module, CNNs combined with GRU network are used to 
capture coupling features and local temporal information of 
multivariates. In the second module, a parallel GRU network 
models historical ST information and captures the nonlinear 
dynamic characteristics of the ST time series. Finally, an FC 

Parallel GRU

Output

DCGNet

2-D CNN 1-D CNN
GRU

GRU

GRU

GRU

GRU FC-1CNNs

Input

Multivariate time series

y

nx

2x
1x



Dynamic 
features of ST 

extraction

Weighted 
features 
fusion

prediction

GRU GRU GRU GRU GRU

Fig. 3.  The algorithm framework based on the DCGNet model 

y
ix

2x

1x

( )x t τ−

2 ( )x t τ−

1( )x t τ−

( )y t τ−

1( )x t

2 ( )x t

( )ix t

( )y t ( 1)y t +
Fig. 2.   Illustration of the model for predicting the ST 

Input variants 
interval

Input variants 
interval

PCA

Handcrafted variate selection Automatic feature learning

FC-2
Multivariate 

coupling 
features 

extraction

Authorized licensed use limited to: Universidade de Macau. Downloaded on September 07,2020 at 03:21:00 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3022019, IEEE
Transactions on Industrial Informatics

 

layer is used to fuse these two modules and predict the ST. 
Through the construction of a three-part model, more abundant 
characteristic information can be obtained, and the modeling 
accuracy of the constructed DCGNet model can be further 
enhanced. 

A. Variate selection based on PCA 
In industrial applications, due to the redundancy between 

input variables, if all input variables are used as model inputs, 
the complexity will increase, and the performance of the model 
will decrease. When the number of learning samples is large, 
PCA [26] can be utilized to select a few key correlated factors 
from all process variates as the inputs of ST modeling. 

PCA is an effective feature extraction method that replaces 
the original variates with low-dimensional principal 
components, thereby filtering out noise and reducing the 
dimensionality of the variates, while the nonlinear principal 
component obtained by PCA is essentially the combination 
function of the original variates. These low-dimensional 
principal components used as the input of the model have no 
clear physical meaning and no theoretical interpretability; 
therefore, these components are unsuitable for actual sintering 
process control of a rotary kiln. Nevertheless, the component 
matrix obtained by PCA indicates the correlation between the 
original variates and each principal component, and the optimal 
input variates can be selected according to the components. 

B. Framework of DCGNet 
After the original number of thermal process variates is 

reduced by PCA, the selected input variate data between time 
t τ−  and time t  are input into DCGNet. The concatenated 
CNNs and GRU are designed to extract the multivariate 
coupling and nonlinear dynamic characteristics. Additionally, 
to more precisely discover the nonlinear dynamic 
characteristics of the ST, another parallel GRU is used solely 
for the historical ST. By combining these two modules, precise 
deep features can be extracted automatically as the inputs of the 
FC layer; then, the ST at time 1t +  is forecast by the FC layer 
as output. In the following sections, we introduce each network 
layer of DCGNet in detail in three parts. 

 
1) Multivariate coupling feature extraction module 

Focusing on the coupling characteristics of the multiple 
process variates, two CNN layers are utilized. The selected 
thermal data are first input into a two-dimensional 
convolutional layer (2-D CNN) without pooling, thereby 
aiming to extract local spatial coupling correlations among the 
multivariates by the two most important features of the CNN: 

local perception and weight sharing.  
The inputs of the CNN layer are a two-dimensional matrix 

[[ ( ),..., ( )],[ ( ),... ( )]]= − −Xy X t X t y t y tτ τ with a size of 
( +1) ( 1)× +nτ . n is the number of optimal process variates 
selected by PCA. The 2-D CNN consists of multiple filters 
whose width is set to be the same as the number of variates. The 
filters sweep through the input matrix Xy  and produce 

( 1)ReLU( )N N N
il j nh w Xy β× += ∗ +                                                (2) 

where  denotes the convolution operation and ( 1)× +
N
j nw  is the 

weight of the N-th filter of size ( 1)× +j n . Nβ is the bias of the 
convolution layer. The ReLU function is 

(x) = max(ReLU 0, x) . In the case of ignoring the boundary 
filling, the output of the 2-D CNN has a size of 1× l , where 

( +1) 1−
= +

jl
s

τ
 and s  is the step length. 

To further refine the features while reducing the number of 
model parameters and improving the operation speed, the 
multiple filters as a one-dimensional convolutional layer (1-D 
CNN) sweep through from top to bottom in a certain step on the 
vectors again, and then the space-time coupling features ilh  are 
compressed as follows: 

1
ReLU( )

N
K K N K

il
i

H w h β
=

= ∗ +∑                          (3) 

where K  denotes the number of filters. After two 
convolution calculations, more refined spatial-temporal 
coupling features of multiple process variates are produced. 

The GRU (Fig. 4) is designed with memory units and gate 
functions in the perceptron to memorize the historical 
information, thereby overcoming the problems of capturing 
long-term dependencies encountered by the RNN.  

 After the feature extraction of two convolutional layers, a 
GRU layer is added to store time information about important 
characteristics of multivariate variates. The last hidden state of 
the GRU cell at time t  is computed as: 

1( )−= + +Xy
t r t r t rr w h v Hσ β                                                         (4) 

1( )−= + +Xy
t z t z t zz w h v Hσ β                                                               (5) 

~

1( ( ) )−= + +

Xy
t h t t h t hh w r h v Htanh β                                         (6) 

~

1((1 ) )−= − + 

Xy Xy
t t t t th z h z h                                                    (7) 
where w and v are weight matrices, β  is the bias vector, 

tanh is a hyperbolic tangent function,   is an element-wise 
multiplication, and σ  is a sigmoid function. 

Eqs. (4) and (5) show the operation of the reset gate tr  and 
the update gate tz . After the output at the current moment tH  

and the hidden state of the previous time step 1−
Xy

th  are obtained, 
the probability of updating or resetting is determined by a 
sigmoid function. In Eq. (6), the current data at the same time 
step tH  and the partial past hidden state selected by the reset 

tanh
σ 

σ 

1-

t 1h − th

tx

tztr

th

 
Fig. 4.  The structure of the GRU 
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gate tr  determine the new memory content 
~

th  by nonlinear
change. In Eq. (7), the update gate tz  filters the new memory 

content 
~

th  and the hidden state at the previous time step 1−
Xy

th  to 

form the current dynamic coupling information Xy
th . 

After the GRU layer, FC-layer-1 unearths the nonlinear 
representation of the spatiotemporal coupling features and 
obtains more precise deep feature information. The output of 
the series GRU layer XyH  is computed as: 

( )Xy Xy
Xy XyD f w H β= +                                                              (8)

where Xyw  and Xyβ  are the weight matrix and bias vector, 

respectively, in FC-layer-1. XyD  is the nonlinear space-time 
coupling feature of multivariate variates. 

2) Dynamic features of the ST extraction module
A parallel GRU layer, which has the same function as a serial

GRU layer but has different inputs, is used solely to capture the 
nonlinear dynamic characteristics in the ST time series. The 
historical ST data over a certain period { ( ),..., ( )}y t y t τ−  are 
used as the inputs of the GRU layer. Then, the GRU stores the 
time information of irregular changes in the early stage of the 
ST sequential data in the cell through the feedback structure. 
With each step update, nonlinear dynamic features yH  of the 
ST are obtained through the function of the parallel GRU layer. 

3) Weighted feature fusion and prediction
After extracting features, we first use FC-layer-2 for

weighted fusion of the output of the two modules, and the final 
outputs of DCGNet are then obtained by line nonlinear 
regression as 

( )Xy y
D y Fcy f w D w H β= + +  (9) 

where y  denotes the model’s final prediction; Dw , yw  and 

Fcβ  denote the weight matrices and bias value, respectively; 
and f  is a nonlinear activation function. 

C. Objective function and optimization strategy
In this paper, the mean squared error (MSE) loss function is

used for optimization in model training and is defined as: 
2

0

1 ( )
L

i
Loss y y

L =

= −∑   (10) 

Where L  is the total number of training data in the time 
sequence and y  is the real value. 

According to the above framework, the Adam 
optimization algorithm is used to find the gradient of the 
network error for each weight parameter in 
back-propagation, and the new weight is obtained through 
the parameter update process. The model weights are 
calculated iteratively until a predetermined small loss is 
reached, and the optimal predicted value is obtained. The 
reasons for choosing Adam as an optimizer are that it can 
design independent adaptive learning rates for different 
parameters and, most importantly, using Adam makes our 
calculations more efficient. The test set is substituted into 
the trained model to predict the ST in the rotary kiln once the 
training work is performed by using the training set. The 
entire DCGNet training process is summarized in Algorithm 
1. 

IV. EXPERIMENTS AND DISCUSSION

A. Experimental data
To verify the effectiveness of DCGNet, we collected many

thermal data from the on-site thermal instruments of a No. 2 
rotary kiln manufactured by the Zhongzhou Aluminium 
Company in China. A total of 7000 samples, with a 
sampling interval of 1 min, were collected for prediction and 
evaluation. According to expert knowledge and the on-site 
DCS, 7 auxiliary variables closely related to the ST were 
collected. The detailed descriptions of the variates are listed in 

Algorithm 1. Outline of DCGNet training for predicting 
the ST in a rotary kiln 
Input: The training set {( , ) | , }×= ∈ ∈ 

L n LZ X y X y  
Output: Weight matrix w , weight matrix v  and bias 
vector β . 
Initialization: Determine the deviation threshold ε , and 
set the hyperparameter; the iteration number =0I , and the 
maximum number of iterations is iteraI . Randomly 
initialize the weight matrix and bias vector. 
Repeat: 

Forward Propagation: 
DO 

Step 1. : Conduct a 2-D convolution operation with 
the multivariate process variable data in Eq. 
(2). Use GRU Eqs. (4)-(7) to extract 
nonlinear dynamic features from the ST time 
series data. 

Step 2. : Conduct a 1-D convolution operation with 
the coupling features from the 2-D CNN 
layers in Eq. (3). 

Step 3. : Use GRU Eqs. (4)-(7) to further process the 
temporal information by using the features 
extracted from the 1-D CNN layers. 

Step 4. : Use FC-layer-1 to reveal the nonlinear 
representation of the spatiotemporal 
coupling features in Eq. (8). 

Step 5. : Use FC-layer-2 to determine the output in 
Eq. (9). 

Step 6. : Calculate the Loss introduced in Eq. (10) 
between the prediction and targets. 

end; 
Backward Propagation: 
Compute the gradient by using Adam, and update the 
weight matrix and bias vector. Let = 1+I I . 

until: If <Loss ε  or iter> aI I  
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Table I. The ST data were detected by an infrared thermometer. 
All samples were divided into 75%, 5% and 20% proportions 
for training, validation and testing, respectively. For 
standardization, all the data were scaled into the range of 0 to 1, 
according to Eq. (11), before the model was established, and 
then the predicted results were transferred back to the same 
units according to Eq. (12):  

min

max

−′ =
+

a aa
a a

 (11) 

max min( )′= + +a a a a a         (12) 
where mina  and maxa  are the minimum and maximum values, 

respectively, of the variable and ′a  and a  are the variable 
parameters after and before scaling, respectively.    

B. The optimal input variates and interval parameter selection
The accumulated cumulative contribution rates of the seven

variates are shown in Table Ⅱ; as this table shows, the 

accumulated cumulative contribution rate of the first four 
principal components is 91.07%. Further, Table Ⅲ shows that 
the variates with the largest weight coefficients among the first 
four principal components are selected as the best features in 
the component matrix. That is, the kiln head temperature, air 
flow, rotation speed and coal feeding value are the optimal 
input variates. 

The interval parameters of the four input variates are 
determined by a grid search. 24=τ  is selected as the optimal 
time interval of the model.  

C. Forecasting accuracy and performance comparison with
other methods

To compare the performance of the DCGNet model, we 
conducted extensive experiments in which seven methods were 
used on industrial datasets for ST forecasting. The methods 
used in our comparative evaluation are as follows: 
1) DAE[27]: A denoising autoencoder network with three

hidden layers
2) MLP[28]: A neural network with three hidden layers
3) DCNN[29]: A convolutional neural network consisting of

one-dimensional and two-dimensional convolutional
layers

4) CNN-LSTM[24]: A two-dimensional convolutional neural
network combined with a long short-term memory network

5) DLSTM[18]: A two-layer long short-term memory
network with dropout

6) DGRU[20]: A two-layer gated recurrent unit network with
dropout

7) DBiGRU[30]: A two-layer bi-directional gated recurrent
unit network with dropout

The experiments were carried out on a personal computer
with an Intel i7-7700 CPU (3.20 GHz) and 8.0 GB RAM. 
DCGNet and the other neural network algorithms used are 
based on Pytorch and Python version 2.7.3.  

In this paper, we performed cross-validation and a grid 
search to determine the optimal parameters for each model. All 
methods use a back-propagation algorithm to continuously 
adjust the weight matrix and bias between the hidden and 
output layers. The hyperparameters were adjusted to achieve 
high performance for each model and compared with those of 
current methods and DCGNet. We experimentally found that 
using the Adam algorithm with a learning rate of 0.01 is more 
conducive to error convergence. With the same input data, each 
model was trained 20 times, and the average value of the results 
was used as the experimental result. 

To train DCGNet, it is important to determine the key 

TABLE I 
THE THERMAL VARIABLES OF THE ROTARY KILN 

Variables Input variable description Unit Mean value 

1x Kiln head temperature °C 551.82 

2x Kiln tail temperature °C 243.28 

3x Main motor current A 259.42 

4x Cooling fan current A 226.30 

5x Air flow m3/h 18210.13 

6x Rotation speed Rad/min 0.91 

7x Coal feeding value Rad/min 8.54 

y Flame temperature °C 1063.89 

TABLE Ⅱ 
ACCUMULATED CONTRIBUTION RATES AND EIGENVALUES CALCULATED BY 

PCA 
Principal 

components 
Accumulated contribution rates 

(%) Eigenvalues 

1 41.82 0.067 
2 68.81 0.043 
3 80.44 0.019 
4 91.07 0.017 
5 95.87 0.008 
6 98.60 0.004 
7 100 0.002 

TABLE Ⅲ 
COMPONENT MATRIX 

Variables 
Principal component 

1 2 3 4 

1x 0.17938 -0.21316 0.31056 0.83398 

2x -0.01388 -0.23789 -0.11606 -0.16802 

3x 0.00964 -0.09695 0.04392 -0.06284 

4x 0.06084 0.20393 0.22306 0.29287 

5x 0.68296 -0.31904 0.51467 -0.38970 

6x 0.69430 0.47616 -0.50886 0.11336 

7x -0.12394 0.72005 0.56087 -0.14766 
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Fig. 5. Comparison of the RMSE at different numbers of iterations for 
DCGNet 
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hyperparameter for the number of iterations in 
back-propagation through time (BPTT). Here, for the 
validation and test datasets, we researched the prediction 
performance of the root mean square error (RMSE) under 
different iteration conditions. As Fig. 5 shows, as the number of 
iterations increases, the RMSE gradually decreases. When the 
number of iterations reaches 500, the RMSE reaches a 
convergence state. Therefore, the number of iterations selected 
in this study is 500. 

For the DAE, the hidden units are chosen as [50,20,50]. For 
the MLP, the hidden units are chosen as [50,20,50]. For the 
DCNN, we adopted a ReLU as the activation function, and the 
chosen hidden unit was [50,50]. Their filter sizes were set to 
6 5× and 2 1× . For the CNN-LSTM, we chose 80 hidden units 
for the CNN layer. The filter sizes of this layer were set to 2 1× . 
The pooling layer has the same filter sizes. The LSTM layer 
size in the CNN-LSTM was 40. For the DLSTM, DGRU, and 
DBiGRU, we performed dropout after each layer, and the rate 
was usually set to 0.2. The number of hidden units was set as 50. 
For DCGNet, we performed dropout after the GRU layer, and 
the rate was set to 0.2. We have 50 hidden layer units for the 
two GRU layers. We adopted a ReLU as the activation function, 

and the chosen hidden unit was [50,50] for the two CNN layers. 
Their filter sizes were set to 6 5×  and 2 1× . For the two FC 
layers, we chose the hidden units as [85,50]. We empirically 
found that the tanh function leads to more reliable performance. 

In this paper, the mean absolute error (MAE), RMSE and 
correlation coefficient (CC) are calculated to estimate the 
prediction accuracy. The definitions of these metrics are as 
follows: 

0

1 | |
N

i
MAE y y

N =

= −∑                                                   (13) 

2

0

1 ( )
N

i
RMSE y y

N =

= −∑                                                         (14) 

( , )
[ ] [ ]

Cov y yCC
Var y Var y

=




                                                             (15) 

where y  is the actual value, y  is the predicted value, and N 
is the number of samples. The MAE and RMSE are used to 
determine the accuracy of the algorithms. The CC represents 
the correlation between the input and output. For the MAE and 
RMSE, a lower value is better, while for the CC, a higher value 
is better. 

 
Fig. 6. Prediction of ST by different algorithms 
 

 
Fig. 7. Prediction error curves of different algorithms 
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Table Ⅳ summarizes the evaluation results of all the 
above-mentioned methods. The actual and predicted values of 
the eight prediction methods are compared in Fig. 6, and the 
corresponding prediction error curves are shown in Fig. 7. 

Clearly, the prediction accuracy of the traditional MLP and 
DAE models is the lowest, and the RMSE values of these 
models are significantly higher than those of the other models. 
Similar results are evident in Fig. 6. Both models perform 
poorly, and they cannot easily fit to the trend of local changes in 
real values. 

In comparison with that of the above two models, the 

prediction accuracy of the three kinds of models containing a 
dynamic recurrent neural network is significantly improved. As 
Table Ⅳ shows, the RMSE values of the DGRU and DBiGRU 
models are 5.9534 and 5.8681, respectively. In contrast, the 
DLSTM-based dynamic networks have poor prediction 
performance, with an RMSE value of 6.8883. In general, the 
curves of these three models basically agree with the actual 
trend. 

Furthermore, the proposed DCNN method also performs 
better than the static neural network, with RMSE and MAE as 
low as 4.6112 and 6.0277, respectively. As Fig. 6 shows, the 
predicted value coincides well with the actual value with a 
smaller deviation. Therefore, the strong coupling relationship 
between multiple variables cannot be ignored in the modeling 
of the rotary kiln. 

Fig. 6 shows that the CNN-LSTM adequately models the 
irregular trend of the ST. The CNN-LSTM evidently has the 
smallest error compared to that of the static and recurrent 
networks compared in Table Ⅳ, thus further verifying the 
effectiveness of the hybrid combination of a convolutional and 
dynamic recurrent network. However, compared with the 
prediction performance of the proposed DCGNet model, the 
prediction performance of this hybrid network can be further 
improved. 

Finally, Table Ⅳ shows that the DCGNet model proposed in 
this paper has the best prediction accuracy, the minimum values 
of the RMSE and MAE and the maximum value of the CC, 
indicating a strong correlation between the real and predicted 
values. As Fig. 7 shows, compared to the other methods, the 
proposed method minimizes the error in the same intervals, 
thereby indicating that the prediction performance of the model 
is optimal. 

In addition, to further evaluate the performance of the 
different prediction models, we introduce an error probability 
distribution curve in this paper. Fig. 8 shows the probabilistic 
distributions of prediction residuals based on the eight different 
prediction models. Compared with other models, the error 
distribution of the predicted ST obtained by the model 
developed in this paper is much closer to zero with smaller 
variations, thus further indicating the reliability of our proposed 
method. 

 
Fig. 8. Error probability distribution curves of different algorithms 
 

TABLE Ⅳ 
COMPARISON OF EXPERIMENTAL RESULTS FOR INDUSTRIAL DATA 
Model 

properties Methods MAE RMSE CC 

Hybrid model 
DCGNet 2.0213 3.4359 0.99881 

CNN-LSTM 3.8745 5.8152 0.99649 
Convolutional 

network  DCNN 4.6112 6.0277 0.99643 

Static network 
MLP 7.1573 10.0170 0.98890 

DAE 7.4002 8.9617 0.99412 

Recurrent 
network  

DLSTM 4.7459 6.8883 0.99538 

DGRU 4.5449 5.9534 0.99645 

DBiGRU 4.2675 5.8681 0.99638 

 
 TABLE Ⅵ 

COMPARISON OF EXPERIMENTAL RESULTS FOR INDUSTRIAL DATA WITH 5% 
RANDOM GAUSSIAN WHITE NOISE 

Model 
properties Methods MAE RMSE CC 

Hybrid network 
DCGNet 2.0154 3.6804 0.99846 

CNN-LSTM 4.1411 6.2840 0.99551 
Convolutional 

network  DCNN 4.5671 6.3514 0.99518 

Static network 
MLP 8.3487 12.4810 0.98443 

DAE 11.3943 13.9245 0.99571 

Recurrent 
network  

DLSTM 6.0978 7.5758 0.99561 

DGRU 4.6499 6.3046 0.99555 

DBiGRU 4.8517 6.6652 0.99503 
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Besides the prediction accuracy, the training time of the 
prediction model is also very important. the prediction accuracy, 
the training time of the prediction model is also very important. 
Table Ⅴ shows that the DCNN has the shortest training time 
because the convolution operation reduces the model 
parameters. In contrast, the rest of the network training times 
are significantly longer. Improving the DCGNet prediction 
accuracy involves appropriately increasing the complexity of 
the model. Therefore, the trade-off between training time and 
prediction accuracy is acceptable for our proposed model. 

D. Robustness of the models  
Furthermore, to verify the robustness of our proposed 

DCGNet model, we add 5% Gaussian white noise to the 
training data. As Table Ⅵ shows, increasing the noise by 5% 
reduces the performance of all the models. However, compared 
to the performance of other models, the performance of 
DCGNet remains optimal. Moreover, Tables Ⅳ and Ⅵ show 
that our proposed DCGNet model has the smallest variation in 
the RMSE of the predicted values, with a range of 0.2445. The 
experimental results demonstrate that our proposed DCGNet 
model has robust performance with each part together and is 
suitable for predicting the ST in rotary kilns. 

E. Ablation study of DCGNet 
To demonstrate the validity of the method of separately 

extracting features and then combining them for prediction, a 
comparative study is conducted. First, we define the different 
models as follows: 
1) DCGNet-WC: A DCGNet model without two CNN layers 
2) CGRU-XY: A DCGNet model without the parallel GRU 

layer 
3) GRU-Y: A parallel GRU layer for the historical ST 
4) ARMA-Y: An autoregressive moving average model for 

the historical ST 
For the above models, the test results measured using three 

evaluation metrics are shown in Table VII. Several conclusions 
from these experimental results are summarized as follows: 
1) The lack of CNN layers reduces the prediction 

performance. Two CNN layers can effectively capture the 
multivariate coupling characteristics of rotary kiln 
sintering. 

2) Removing the input of historical ST data in CGRU-XY 
greatly reduces the performance. The dynamic 
characteristics of historical ST data cannot be ignored. 

3) The sintering process has the characteristics of multivariate 
coupling so that a variate state is affected by other thermal 
variables. The univariate methods of GRU-Y and ARMA 
cannot uncover the latent correlation of time series data 
and may be unsuitable for time series prediction with 
irregular fluctuations in a rotary kiln industrial process. 

4) All the inputs of DCGRU together and each part of the 
network lead to the optimal performance of our approach, 
thus verifying that our method can obtain richer feature 
information through accurate modeling and further 
improve the prediction accuracy. 

F. Input selection experiment 
The prediction performance of DCGNet is compared by 

choosing all variables as inputs or the best variable selected by 
PCA as input to verify the effectiveness of the PCA method. 
According to Fig. 9, when all variates are used, the MAE and 
RMSE of our proposed DCGNet are 2.8605 and 4.6045, 
respectively. In contrast, after the variates are selected using 
PCA, the MAE and RMSE are reduced to 2.0213 and 3.4359, 
respectively. The comparison results show that PCA can 
effectively eliminate the redundancy between input variates 
and improve the prediction accuracy of the model. 

The interval τ  is a parameter that controls the length of a 
variate that is input into our proposed DCGNet model. Clearly, 
a small τ  does not fully consider the local sequential signal of 
the input data, so too many spatiotemporal coupling features 
may be lost. With a large τ , the presence of signal redundancy 
increases the computational burden. We tested our proposed 
DCGNet while using different intervals in combination with 
sintering. As previously reported, the other parameters of our 
proposed DCGNet remain unchanged. Fig. 10 shows that a very 

TABLE Ⅴ 
THE TRAINING TIME OF DIFFERENT MODELS 

DCGNet DAE MLP DCNN CNN-LSTM DLSTM DGRU DBiGRU 

90.9 s 48.1 s 32.1 s 26.1 s 65.6 s 49.2 s 48.1 s 73.4 s 

 
 

TABLE Ⅶ 
THE PREDICTED RESULTS IN THE ABLATION STUDY  

Methods MAE RMSE CC 

DCGNet 2.0213 3.4359 0.99881 

DCGNet-WC 3.5206 5.4252 0.99668 

CGRU-XY 3.9887 5.6581 0.99649 

GRU-Y 4.1636 6.2911 0.99551 

ARMA-Y 5.0206 6.9082 0.99528 

 
 

 
Fig. 10. Experiment with different input time intervals 
 

 
Fig. 9. Experimental comparison of PCA analysis 
 

Authorized licensed use limited to: Universidade de Macau. Downloaded on September 07,2020 at 03:21:00 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3022019, IEEE
Transactions on Industrial Informatics

 

large and small τ  both impede the performance of our 
proposed DCGNet. With a moderate interval length of =24τ , 
our proposed DCGNet model achieves the best performance. 

V. CONCLUSION 
In this paper, aiming to determine the multivariate coupling 

and dynamic nonlinear characteristics of rotary kiln sintering, a 
new data-driven model for ST prediction based on a hybrid 
deep network is proposed. By using PCA, the optimal 
correlative variates of the network are selected. Then, the 
DCGNet model based on CNNs and GRU networks is 
constructed to learn the deep representations of multivariate 
thermal process data. Comparative experiments and an ablation 
study on real-world data verified the effectiveness and 
robustness of our method. 

In future research, we will explore a universal framework for 
the prediction modeling of other variables of rotary kilns, 
especially the modeling of control variables, such as coal 
feeding. Such a framework has great significance for the 
process optimization of production. 
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